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Abstract 
 

Starch branching enzyme (SBE) activity in the cassava storage root exhibited a 

diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding 

SBE genes. The peak of SBE activity coincided with the onset of sucrose 

accumulation in the storage, and we conclude that the oscillatory mechanism 

keeps the starch synthetic apparatus in the storage root sink in tune with the flux 

of sucrose from the photosynthetic source. When storage roots were uncoupled 

from the source, SBE expression could be effectively induced by exogenous 

sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, 

mimicked the effect of sucrose, demonstrating that downstream metabolism of 

sucrose was not necessary for signal transmission. Also glucose and glucose-1-P 

induced SBE expression. Interestingly, induction by sucrose, turanose and 

glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE 

expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. 

These results suggest a pivotal regulatory role for HXK during starch synthesis. 

Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by 

ABA was similar to that of glucose-1-P in that it bypassed the semidian 

oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic 

acid, a protein phosphatase inhibitor. Based on these findings, we propose a 

model for sugar signaling in regulation of starch synthesis in the cassava storage 

root.  
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Introduction 
 

In plants, sugar sensing and signaling play critical roles in controlling many aspects of 

growth, metabolism and development throughout the whole plant life cycle.1-4 

Through photosynthesis, plants convert atmospheric carbon dioxide to sugars, which 

are transported as sucrose from sugar-exporting (source) organs, such as leaves, to 

sugar-importing (sink) organs, such as tubers, seeds, or storage roots. The coordinated 

modulation of gene expression in source and sink organs is to a large extent 

choreographed by the sugar status in the cells (see ref. 5 and refs therein). In general, 

low sugar levels promote photosynthesis and mobilization of energy reserves, 

whereas high sugar levels stimulate growth and storage of starch and other 

carbohydrates.  

Development of sink organs is orchestrated by the coordinated activities of a large 

number of genes that encode metabolic and regulatory enzymes, as well as other 

proteins. Starch synthesis is catalyzed by an enzymatic machinery containing ADP-

glucose pyrophosphorylase (AGPase), starch synthases (SS), starch branching 

enzymes (SBE), and starch debranching enzymes (DBE). Most, if not all, of these 

enzymes exist in two or more isoforms (see refs. 6-8 for reviews on starch 

biosynthesis). 

Cassava (Manihot esculenta Crantz L.) is a perennial starch crop of major global 

importance, particularly in the Developing World.9,10 Starch is synthesized and 

deposited in the underground tuberous storage roots, which can measure up to 1 m in 

length and over 10 cm in diameter. The storage root is a non-reproductive organ and 

can accumulate close to 85% of its total dry weight as starch.  

During development of the cassava storage root, expression of the SBEII and SBEI 

genes, encoding, respectively, SBEII and SBEI, gradually increases from 90 to 360 

days after planting (d.a.p.).11 Accumulation of SBEII and SBEI transcripts in 360 

d.a.p. plants was also found to exhibit a short-term fluctuation with a period of one 

day.  In the work presented here, we followed the induction of SBE expression in 

isolated cassava storage root discs by sugars, sugar analogs and abscisic acid (ABA). 

Our results establish the presence of an endogenous semidian (12-h) oscillator in the 

storage root cells at the level of hexokinase (HXK). They also suggest that sugar and 
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ABA signaling proceeds via independent pathways, and that the sugar signaling 

cascade is activated by the entry of sucrose into the cell and relies on HXK activity.  

 

 

Results  
 

Diurnal control of SBE expression in the cassava storage root is mediated by a 
local, semidian oscillator 
 
Typical 24 h expression cycles for the cassava SBEII and SBEI genes in the 

underground storage root from plants grown under two different day-night (LD) 

regimes are displayed in Fig. 1 a. Under normal growth conditions, transcription 

peaked at midday, corresponding to six hours into the light zone. When the onset of 

light was moved forward, the peak of transcription shifted accordingly. Zymogram 

analysis revealed that the enzymatic activity of the two proteins fluctuated in 

accordance with SBEII and SBEI transcript levels (Fig. 1 b). This implies that the 

diurnal rhythm in SBEII and SBEI expression is a regulatory phenomenon and 

suggests a dynamic behavior of starch synthesis in the storage root during a 24 h 

period. In addition to the SBEII and SBEI activities, a third activity band was visible 

on the zymogram. This likely corresponds to endogenous starch phosphorylase a (Sun 

et al., 2005).  

There is ample evidence that sucrose stimulates expression of starch synthesis 

genes in many plants via a sugar-signaling pathway.2-5,14-16 Thus a likely scenario is 

that the oscillation in SBEII and SBEI activity in the cassava storage root is controlled 

by the import of photosynthate, i.e. sucrose, from the source tissues to the 

underground sink. To probe this hypothesis, we monitored the time course for sucrose 

accumulation in the cassava storage roots from LD plants (Fig. 2). The results 

revealed that the onset of sucrose accumulation in the storage root coincided with the 

maximum levels of SBEII and SBEI transcripts, and that the maximum sucrose 

concentration was reached at 1 p.m., one hour after the SBEII and SBEI peak time. 

We interpret these findings to mean that the transcriptional machinery for the SBEII 

and SBEI genes in the cassava storage root is set to anticipate the incoming sucrose, 

i.e. the substrate for starch synthesis, from the source. The situation becomes 
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analogous to the circadian rhythm of photosynthesis genes, which prepares the pre-

dawn photosynthetic cell for the approaching light exposure. 

To further our understanding of the temporal influence of sucrose on SBE 

expression in the storage roots, we uncoupled the sink organs from source control and 

examined SBEII expression in cassava root discs from plants that had been kept in 

continuous darkness (DD) for 48 h to remove endogenous metabolizable sugars. The 

root slices were maintained under DD conditions to mimic the natural environment 

and transferred to sucrose medium. No SBEII expression could be detected in discs on 

non-sucrose medium (Fig. 3 a). Shifting to sucrose-containing medium efficiently 

increased endogenous sucrose levels and SBEII transcripts appeared within two hours. 

Surprisingly, both transcription and enzyme activity in the isolated root discs 

oscillated with a period of approximately 12 h (Fig. 3 b, c). Since the sucrose 

concentrations did not change accordingly but, rather, showed a slight decline (Fig. 3 

d), the results clearly demonstrate that the observed oscillations are not governed by 

fluctuations in the sucrose output form the source tissues but originate from an 

endogenous, semidian (12-h) oscillator in the storage root itself. The oscillations 

persisted without any damping beyond day 2 after transfer to sucrose medium.  

 

Sugar-induced semidian oscillation of SBE expression relies on sucrose sensing 
at the plasma membrane and HXK activity 
  
Employing different sugars and sugar analogs potentially can yield valuable clues 

regarding the mechanisms of the sugar-signaling pathway. This is particularly true 

since exogenously supplied sucrose can readily convert to hexoses in the apoplast or 

cytosol, obscuring interpretations as to whether the sensed sugar is sucrose or some 

downstream metabolite. Palatinose (α−glucose-1,6-β-fructose) and turanose 

(α−glucose-1,3-β-fructose) are both isomers of sucrose (α−glucose-1,2-β−fructose). 

From the plants so far studied, it is generally considered that palatinose and turanose 

can neither be recognized by plant sucrose transporters (SUTs), nor be metabolized by 

plant enzymes.17-20 However, although they are not taken up by plant cells, work on 

barley embryos,21 potato tubers17 and tobacco leaves22,23  shows that palatinose and 

turanose can modulate sugar signaling, and it was suggested that they are perceived 

extracellularly, possibly at the plasma membrane, by disaccharide sensors distinct 

from SUTs.18,21 Also, at least in one case, for the main phloem-loading SUT in 
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Arabidopsis (AtSUC2), it was shown that turanose could serve as a transported SUT 

substrate.24 Uptake of turanose was also reported for leaves of garden cress25 although 

it is not clear if a SUT or some other transporter was engaged. 

As is demonstrated in Figure 4, addition of turanose to cassava storage roots 

induced SBE expression to almost the same extent as sucrose. Remarkably, turanose 

also mimicked sucrose by sustaining the semidian oscillation of SBE transcript levels 

(Fig. 4 b). Glucose and fructose also stimulated SBE expression but were weaker 

inducers than sucrose. Mannose, which is taken up by the cells and phosphorylated by 

HXK,18,26,27 as well as mannitol and 3-O-methyl-glucose, which are taken up by the 

cells but are poor substrates for HXK, had no effect. Also trehalose, which has been 

implicated in plant sugar signaling, 2,4 had no effect.  

The inability of mannose to induce SBE expression implies that HXK-dependent 

phosphorylation of an incoming substrate does not suffice to initiate a signaling event, 

contrary to the phosphotransferase system in bacteria. This by itself, however, does 

not disqualify HXK as an important element in the intracellular signaling pathway. A 

possible path would be that the signal initiated at the level of a SUT, or a designated 

sucrose sensor, in the plasma membrane results in activation of HXK, with 

subsequent phosphorylation of endogenous glucose. In the intact plant, glucose will 

be plentiful in developing storage roots but in our experimental system it would likely 

be derived from mobilization of starch reserves in the amyloplast. To assess the 

requirement for HXK in sucrose induction of SBE expression, we investigated the 

effects of sucrose and turanose in the presence of glucosamine, a well-documented 

HXK inhibitor.2,4,18 The results revealed that induction by turanose was completely 

abolished and that of sucrose severely diminished after addition of the inhibitor (Fig. 

4 c). Thus the signal that emanates from sucrose sensing at the plasma membrane 

depends on HXK activity for downstream transduction.  

The finding that the sugar-signaling pathway was disrupted by HXK inhibition, 

suggested that hexose phosphates, such as glucose-1-P or glucose-6-P, might be 

potent inducers of SBE expression. To our knowledge, plant plasma membranes do 

not contain hexose phosphate translocators and, therefore, delivery of extracellular 

hexose phosphates to storage root slices is expected to be poor. However, we found 

that the effect of exogenous glucose-1-P on SBE induction was stronger than for 

glucose and comparable to that of sucrose (Fig. 4 a). If the efficient uptake of 

glucose-1-P points to a plasma membrane glucose transporter with broad substrate 
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specificity, or to some other facilitated transport mechanism is not known. Glucose-1-

P and glucose-6-P are equilibrated in the cell by the action of phosphoglucomutase, 

and so we do not know which of them is the signaling agent, or if they both are 

equally effective. A noteworthy difference between glucose and glucose-1-P was that 

glucose, just like sucrose and turanose, supported oscillation of SBE expression, 

whereas glucose-1-P did not (Fig. 4 b).   

Based on these findings, we arrive at the following conclusions concerning the 

sugar-signaling cascade that regulates the semidian SBE expression in the cassava 

sink cells: 

1. The main trigger for the signaling event operates at the level of sucrose 

perception or transport, i.e. the arriving sucrose molecule from the source does not 

need to be hydrolyzed by cell wall invertase or cytosolic enzymes.  

2. HXK activity is crucial for the intracellular signaling pathway, and it is the 

hexose phosphates, not the phosphorylation step, that mediate the signal.  

3. HXK is activated by sucrose and, possibly, glucose transport at the plasma 

membrane. 

4. The oscillator that brings about the semidian rhythmicity of SBE expression is 

located upstream of glucose-1-P/glucose-6-P but downstream of glucose, i.e. at the 

level of HXK.  

 
 
ABA promotes induction of SBE expression but bypasses the oscillator 
 
Sugar signaling does not operate in splendid isolation but rather is integrated in 

cellular regulatory networks. Most notably, there is a tight interaction between sugar 

and hormonal signaling, particularly for ABA.2,4,28-30 Work on Arabidopsis has shown 

that ABA stimulates the accumulation of storage reserves, such as starch,28 and from 

studies on Arabidopsis leaves it was reported that ABA enhances sucrose-induction of 

genes encoding SBE2.2 and the small subunit of AGPase.28,31  

Addition of ABA to cassava storage root discs effectively induced SBE expression 

(Fig. 5 a). Induction occurred both in the absence or presence of added sucrose, and 

the effects were additive. Importantly, ABA-induced SBE expression in cassava sink 

cells was constitutive and did not oscillate (Fig. 5 b). Thus induction of SBE 

expression by both ABA and glucose 1-P bypasses the semidian oscillator. Taken 

together, these results also tentatively place the influence of ABA in the sugar-
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hormonal regulatory network downstream of HXK, a notion supported by the 

insensitivity of ABA induction to glucosamine (Fig. 5 c).  

Not surprisingly, several studies have provided evidence for the involvement of 

reversible phosphorylation events in ABA signaling.14 Two of the genes implicated in 

ABA signaling turned out to encode protein phosphatases32 and inhibition of protein 

phosphatase 1 and 2A by okadaic acid was found to alter ABA-induced gene 

expression.33 As is shown in Fig. 5 d, okadaic acid inhibited ABA induction of SBE 

expression. Furthermore, okadaic acid inhibited also the induction by sucrose, 

turanose, glucose and glucose-1-P (Fig. 5 e), suggesting that protein phosphatase 1 or 

2A might be a common regulator for the sugar and ABA signaling pathways in the 

cassava storage root.  

 

 

Discussion 
 

The findings in this work are summarized in a model of the sugar-induced signal 

transduction pathway that controls SBE expression in the cassava storage root sink 

(Fig. 6). Sucrose arriving in the sieve elements is translocated to the sink cells via a 

SUT. Some of the sucrose might be converted to glucose and fructose by apoplastic 

invertase, with subsequent uptake of the hexoses through monosaccharide transporters 

(MSTs). The SUT-substrate complex transmits a signal to HXK, activating the 

enzyme above a basal constitutive level. A similar signal might originate at the 

engaged MST. In both cases, the rationale is to signal to the cell that carbon has been 

allocated from the source to the sink for starch synthesis, and that glucose-6-P is in 

demand for transport to the amyloplast. From glucose-6-P, or a downstream 

metabolite, the signal eventually leads to activation of a protein phosphatase. The 

ensuing events are likely to involve migration of a transcription factor to the nucleus, 

followed by activation of the SBE genes.  

Whereas the sugar-signaling pathway serves to regulate SBE expression in 

response to photosynthate status, ABA signaling would communicate stress 

conditions. It is known that environmental factors such as temperature and length of 

water deficit affect root expansion in cassava, and it has been proposed that ABA 

plays a critical role in the regulatory network that is activated by drought.9,34 Under 
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such circumstances, or when the sink cell experiences osmotic stress due to high 

influx of sugars, conditions are not favorable for continued photosynthesis and 

vegetative growth and the plant would downregulate source activities and upregulate 

sink activities. From their work on regulation of starch synthesis in Arabidopsis 

leaves,31 suggested a model where ABA signaling increases the sensitivity of 

metabolic processes to a separate sugar signal. High sugar levels and other high 

osmotic conditions result in ABA accumulation and induces a “storage mode”, while 

in the absence of ABA the plant switches to a “mobilization mode”. In our model, the 

cross talk between sugar and ABA signaling merges at the protein phosphatase. Since 

induction of SBE expression by sucrose and ABA in combination was higher than for 

sucrose alone, it is quite possible that ABA boosts the sugar signal by interacting with 

the protein phosphatase. The placement of ABA activity downstream of HXK follows 

from the observation that signaling by both ABA and glucose-1-P circumvented the 

oscillator, and from the fact that ABA induction was insensitive to HXK inhibition.  

The nature of the semidian oscillator is unknown but we hypothesize that it is 

functionally linked to HXK; semidian rhythmicity of SBE expression was obtained 

after induction with sucrose, turanose and glucose but not glucose-1-P or ABA. 

Conceivably, an oscillation in HXK activity could be dictated by a transcriptional 

rhythm for a HXK-interacting protein in very much the same way as described by 

Jones and Ort35 for the circadian regulation of sucrose phosphate synthase (SPS) 

activity in tomato leaves. The authors showed that the activity of SPS was dependent 

on reversible phosphorylation and subject to both diurnal and circadian control, and 

they inferred that an endogenous rhythm in the transcription of a protein phosphatase 

promoted the circadian oscillation of the SPS phosphorylation state. Interestingly, a 

12-h endogenous rhythm for SPS activity was reported for soybean leaves.35,36 The 

diurnal behavior of SBE transcription and SBE activity in the storage roots of intact 

cassava plants and the existence of a local semidian oscillator in the storage root cells 

suggest that the temporal regulation of SBE expression comprises multiple levels of 

modulation. 

Arguably, our studies on isolated storage root discs suffer from several 

shortcomings with regards to transposing the results to the whole plant level. For 

example, we do not know if phloem unloading in cassava is apoplastic or symplastic 

and, hence, to what extent the apoplastic uptake of sucrose that occurs in the root 

discs represents the normal transfer of solutes in cassava. In potato, phloem unloading 
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shifts from essentially apoplastic during stolon elongation to predominantly 

symplastic during tuberization.37,38 Obviously, it will be important to determine the 

principles for phloem unloading in the cassava plant. 

Another issue concerns the physiological significance of the semidian (and diurnal) 

fluctuations of SBE gene expression in the cassava storage root. It has been shown 

recently that SBE activity in wheat amyloplasts and chloroplasts is regulated by 

phosphorylation.39 If this is the same in cassava, and how such an allosteric regulation 

would cooperate with the semidian oscillation of SBE expression during development 

of the cassva storage root, remains to be investigated. 

There are also questions with regards to the metabolic fluxes proposed in Fig. 6 

that need to be addressed in future experiments. Although it is well established that 

UGPase is involved in production of Glu-1-P40-42, in their work on transgenic potatoes 

Zrenner et al.43 suggested that only a minor portion of UGPase activity is required for 

normal carbon metabolism and starch synthesis in tubers. Thus to what extent 

UGPase contributes to Hx-P pool levels in the cassava storage root is not yet clear. 

Further, we are assuming in our model that the predominant form of carbon uptake in 

cassava amyloplasts is Glu-6-P as is the case in potato tubers, and not ADP-Glu as in 

cereals seeds (see recent review by Geigenberger and Fernie44). That, of course, needs 

to be firmly established. 

In conclusion, we have uncovered a novel feature in the regulation of starch 

synthesis, an endogenous semidian sink oscillator, and present a model of the sugar-

signaling network that controls SBE expression in the developing cassava storage 

root. We hope the model provides a framework for further studies in plant sugar 

signaling and sink-source communication. 

 

 

Materials and methods 
 

Plant material and growth conditions 
 
Manihot esculenta Crantz cv. MH95/0414, officially designated as NASE 12 in 

Uganda, was grown in a glasshouse under a 14-h light, 23 °C/10-h dark, 18 °C (LD) 

regimen. Unless stated otherwise, growth conditions were as described.11 Cassava 



 11 

storage roots were sampled at 360 d.a.p. for transcript, protein and carbohydrate 

analyses. 

 

RNA gel blot analysis 
 
Total RNA extraction from cassava storage roots and RNA gel blot analysis was 

carried out as described by Baguma et al.11 

 

Zymogram analysis 
 
Zymograms for SBE activity were performed as described by Sun et al.12  
 

 
Sugar and starch analyses 
 
Sugars were extracted by the ethanol method.13 Estimation of sugar and starch content 

was done by measurement of changes in NADPH concentration at A340 using the 

EnzytecTM Kits (Scil Diagnostics GmbH, Sweden).  

 

Induction of SBE expression 
 
360-day-old plants were entrained to dark conditions for 48 h. In series, cassava 

storage roots were harvested, sliced into 5 mm discs and depleted of endogenous 

sugars in 3% mannitol (v/v) for 24 h. The discs were subsequently transferred to a 

stack of Whatman papers saturated with 200 mM sugars or sugar analogs, and/or 5 

µM ABA. Glucosamine (0-100 mM) or okadaic acid (1µM) were added as indicated. 
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Figure legends 
 

Figure 1. Activity rhythms in the cassava storage root from plants grown under LD 

conditions.  

 

(a) RNA gel blot analysis. Storage root RNA was extracted from plants grown under 

two different LD regimens at indicated times during the day and assayed for SBEII 

and SBEI gene activity.  

 

(b) Zymogram analysis. Protein was extracted from storage roots at indicated times 

during the day and analyzed for starch branching enzyme activity.  

 

Times are indicated as follows: 24, midnight; 06, 6 am; 12, noon; 18, 6 pm; 21, 9 pm. 

SPa, starch phosphorylase a.  

 

 

Figure 2. Changes in carbohydrate levels in the cassava storage root from plants 

grown under LD conditions.  

 

(a) Starch and sugars were extracted at indicated times during the day. Lv-suc, leaf 

sucrose; Lv-starch, leaf starch; Lv-glu, leaf glucose; SR-suc, storage root sucrose; SR-

glu, storage root glucose.  

 

(b) SBEII and SBEI gene activity between 11 am (11) and 1 pm (13). 

 

Times are indicated as follows: 9, 9 am; 10, 10 am; 11, 11 am; 12, noon; 13, 1 pm; 14, 

2 pm; 15, 3 pm. 

 

 

Figure 3. Sucrose induction of SBE expression and SBE activity in isolated discs of 

cassava storage roots kept under DD conditions.  
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(a) RNA gel blot analysis of SBE expression. Root discs from dark-adapted plants 

(360-d-old) were depleted of endogenous sugars for 48 h (48-h-DD) and then 

transferred to sucrose medium. RNA was extracted at indicated times after sugar 

induction and assayed for SBEII and SBEI activity. 

 

 (b) RNA gel blot analysis of SBE expression. A detailed time-course for SBEII and 

SBEI gene activity in the interval 12 – 24 h after sugar induction.  

 

(c) Zymogram analysis. Protein was extracted from storage root discs at indicated 

times after sugar induction and analyzed for starch branching enzyme activity. (For 

identification of the activity bands, see Sun et al., 2005). 

 

(d) Sucrose content. Sugars were extracted from storage root discs depleted of 

endogenous sugars for 48 h (48-h-DD) and at indicated times after addition of sucrose 

or H2O. 

 

SPa, starch phosphorylase a,  Suc, sucrose  

 

 

Figure 4. RNA gel blot analyses of SBE expression after application of sugars or 

sugar analogs to isolated discs of cassava storage roots kept under DD conditions. 

 

(a) SBE expression after addition of sucrose (Suc), glucose (Glu), fructose (Fru), 

glucose-1-P (Glu-1-P), trehalose (Tre), mannose (Man), mannitol (Mnt), 3-O-methyl 

glucose (3-O-m-glu), or turanose (Tur).  

 

(b) SBE expression at different time points after addition of turanose, glucose, or 

glucose-1-P (Glu-1-P). Times are indicated as in Fig. 1.  

 

(c) Sucrose or turanose-induced SBE expression in the presence of 0-100 mM 

glucosamine (Glu-NH2). 

 

 



 18 

Figure 5. RNA gel blot analyses of SBE expression after application of sucrose, 

glucose, turanose and/or abscisic acid (ABA) to isolated discs of cassava storage roots 

kept under DD conditions. 

 

(a) Induction of SBE expression by ABA, sucrose, or ABA + sucrose. 

 

(b) SBE expression at indicated times after induction with ABA.  

 

(c) Induction of SBE expression by ABA in the presence or absence of 100 mM 

glucosamine (Glu-NH2).   

 

(d) Induction of SBE expression by ABA in the presence or absence of okadaic acid 

(OA).  

 

(e) Induction of SBE expression by sucrose, turanose, glucose or glucose-1-P (Glu-1-

P) in the presence or absence of okadaic acid.  

 

 

Figure 6. Model showing sugar and ABA signaling transduction (dashed purple 

arrows) during regulation of SBE gene expression in the cassava storage root.  

 

Sugar signaling is predominantly activated by the entry of sucrose. A signal is 

transmitted from the SUT to glucose-6-P, or a downstream regulator, via HXK. The 

sugar and ABA signaling pathways intersect at a protein phosphatase. The semidian 

oscillator (circled squiggle) is functionally associated with HXK. ABA, abscisic acid; 

Fru, fructose; Glu, glucose; HPT, hexose phosphate transporter; HXK, hexokinase; 

Hx, hexose; Hx-P, hexose-phosphate; INV, apoplastic invertase; MST, 

monosaccharide transporter; PGM, phophoglucomutase; PP, protein phosphatase; PPi, 

pyrophosphate; SBE, starch branching enzyme; SSE, starch synthesizing enzymes; 

SUSY, sucrose synthase; SUT, sucrose transporter; UGPase, UDP-glucose 

pyrophosphorylase; X, unknown protein. 
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